Multi-symplectic Runge–Kutta-type methods for Hamiltonian wave equations

نویسندگان

  • HONGYU LIU
  • KAI ZHANG
  • K. ZHANG
چکیده

The non-linear wave equation is taken as a model problem for the investigation. Different multisymplectic reformulations of the equation are discussed. Multi-symplectic Runge–Kutta methods and multi-symplectic partitioned Runge–Kutta methods are explored based on these different reformulations. Some popular and efficient multi-symplectic schemes are collected and constructed. Stability analyses are performed for these schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations

In this paper, we study the integration of Hamiltonian wave equations whose solutions have oscillatory behaviors in time and/or space. We are mainly concerned with the research for multi-symplectic extended Runge-Kutta-Nyström (ERKN) discretizations and the corresponding discrete conservation laws. We first show that the discretizations to the Hamiltonian wave equations using two symplectic ERK...

متن کامل

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law

Multi-symplectic methods have recently been proposed as a generalization of symplectic ODE methods to the case of Hamiltonian PDEs. Their excellent long time behavior for a variety of Hamiltonian wave equations has been demonstrated in a number of numerical studies. A theoretical investigation and justification of multi-symplectic methods is still largely missing. In this paper, we study linear...

متن کامل

Generating functions of multi-symplectic RK methods via DW Hamilton-Jacobi equations

In this paper we investigate Donder-Weyl (DW) Hamilton-Jacobi equations and establish the connection between DW Hamilton-Jacobi equations and multi-symplectic Hamiltonian systems. Based on the study of DW Hamilton-Jacobi equations, we present the generating functions for multi-symplectic partitioned Runge-Kutta (PRK) methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005